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Abstract—The microservices architecture has become ubiqui-
tous in the cloud environment. It simplifies application develop-
ment by breaking monolithic applications into manageable micro
services that can be developed and deployed independently of the
whole. However, the move from a monolithic or simple multi-tier
architecture to a distributed microservice “service mesh” leads
to new challenges due to the more complex application topology.

A particular problem when automatically managing the per-
formance of microservices is that since each service component
scales up and down independently, it can easily create load
imbalance problems on shared backend services accessed by
multiple components. Traditional load balancing algorithms were
designed for centralized load balancers sitting between a group
of clients and a server farm. These algorithms, however, do not
port over well to a distributed microservice architecture where
load balancers are deployed client-side. In this paper we propose
a self managing load balancing system, BLOC, which provides
consistent response times to users without using a centralized
metadata store or explicit messaging between nodes.

We show that different service layers scaling independently
can create unacceptably wide response time distributions and
long tails, hurting client experience. This is because popular
microservice load balancing algorithms, like Least Connection,
only use a single component’s view of the backend load to
guide decisions. This limited perspective leads to an unevenly
balanced system and the potential for incast problems where
a large number of frontend components can easily overload a
shared backend. BLOC uses overload control approaches like
rate limiting, active queue management and backpressure to
provide feedback to the load balancers. The load balancers react
to this feedback with techniques like backoff and retries. We
show that this performs significantly better in solving the incast
problem in microservice architectures.

Evaluating this framework, we found that BLOC improves
the response time distribution range, between the 10th and 90th

percentiles, by 2 to 4 times and the tail, 99th percentile, latency
by two times.

Index Terms—microservices, loadbalancing, overload control

I. INTRODUCTION

Microservices have become increasingly popular due to a
variety of advantages they provide like ease of deployment,
continuous integration, independent development and others.
However, it also brings the network inside the architecture as
the monolith is broken into multiple independently deployed
pieces. In most current scenarios, microservices are deployed
as containers in clusters managed by an orchestrator like
Kubernetes [1]. A pattern related to container clusters that
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Fig. 1. A multi-tier application built from Monolithic services (top) can be
decomposed into microservice components (bottom), potentially improving
development practices, but complicating the application topology. Sidecar
load balancers (green circles) are deployed adjacent to each microservice
component to route requests to downstream nodes.

has also become popular is a move away from single-node
centralized load balancers. Instead, client-side load balancers
are deployed alongside each upstream service container as a
“sidecar”, as illustrated in Figure 1. An advantage of using
this pattern is that the load balancer is removed as a single
point of failure or performance bottleneck.

Many microservice deployments are managed by service
meshes like Istio [2]. Istio uses Envoyproxy [3] for load bal-
ancing, which uses a power of two random choices (P2C) [4]
version of the Least Connection algorithm. Least Connection
is based on Join the Shortest Queue (JSQ), which has been
proven to closely approximate the best possible load balancing
algorithm by greedily selecting the backend which currently
has the smallest queue of work [5]. However, JSQ’s optimality
depends on it being deployed in a centralized environment
where all requests flow through a single load balancer, giving
it a global view of backends’ queues. In Least Connection, a
sidecar based load balancer lacks this perspective, so it selects
the backend to which it currently has the smallest number of
open connections as the target for a request. In this case, the
selected backend may not necessarily have the smallest queue
since the policy only accounts for requests coming from the



node attached to the sidecar.
In a microservice deployment, it is common for backend

services to be shared by multiple upstream components, each
of which may be replicated. In such a scenario, each upstream
node sends only a small fraction of the total requests that each
downstream node receives. This leads to a divergence between
the actual load of the downstream nodes and the estimate of
that load the upstream nodes have. As a result, the performance
of the application can deteriorate quickly due to bad decisions
made by such “local” algorithms.

In this work, we present BLOC1, which makes the down-
stream nodes a part of the decision making without requiring
expensive coordination. We compute the capacity of each
service in terms of the number of requests one node of that
service can handle while keeping end-to-end response times
within the SLO (Service Level Objective). We then send
each upstream node that we are currently interacting with
“confidence chips” that will enable them to send requests
in the future. The scheme also maintains some capacity for
upstream nodes that the downstream is not interacting with at
the moment but might still send a request. Downstream nodes
use active queue management to reject requests that push the
number of active requests over its capacity. In response to
such rejections, the upstream nodes backoff for a predefined
amount of time. Upstream nodes also use power of two random
choices to reduce the likelihood of immediately selecting a
downstream node that just rejected a request.

We make the following contributions in this paper:
• The design of BLOC, a distributed load balancing system

that uses admission control, backpressure, and piggy-
backed server information to effectively balance load,
particularly in overload scenarios.

• BLOC’s architecture is fully distributed, requiring no co-
ordination between replicas or centralized load balancers
that can be a bottleneck or single point of failure.

• BLOC’s implementation uses ingress and egress proxies
deployed as container sidecars, allowing its load balanc-
ing and admission control algorithms to be seamlessly
integrated with existing applications without code modi-
fications.

We implement BLOC as a Go based proxy and deploy
it in a Kubernetes cluster. Our evaluations show that BLOC
can improve the response time distribution from 10th to 90th

percentile by 2 - 4 times and the 99th percentile tail latency
by two times.

II. BACKGROUND AND MOTIVATION

Microservices and Sidecars: Micorservices are a popular
architecture pattern that breaks a monolithic application into
multiple smaller services. It allows for shorter development
time, faster deployment cycles, usage of different technology
stacks for different parts of the application, swapping entire
parts of an application, and continuous integration without any
impact on the operation of the overall system.

1Source code available at [6]

Microservices are typically deployed in containers with an
orchestrator framework like Kubernetes. Just as microservices
are the smaller parts of a decomposed monolithic service,
container orchestration frameworks take this a step further
and allow each microservice to be decomposed into several
containers, e.g., one container might hold the application
business logic, while others run monitoring components and
load balancing proxies. These auxiliary containers are typically
referred to as “sidecars”, due to the way they are deployed
adjacent to an application container and often process their
incoming or outgoing requests. A group of application-specific
and auxiliary containers that together form a logical service
are grouped into a single namespace known as a “pod” by
Kubernetes.

Since each pod can be replicated multiple times to scale
up and down a microservice component, it is necessary to
have load balancers that help route requests to the appropriate
downstream node. The ability to easily glue together functional
components has allowed for the move away from single-node
centralized load balancers to distributed sidecar load balancers
deployed as part of each pod. Each proxy sidecar thus handles
load balancing all outgoing requests from the microservice
component they are attached to across muliple downstream
replicas. This distributes the load balancing work, giving a
more scalable system, but it also means that each load balancer
lacks the global view of a centralized approach.

Istio, Envoy, and Least Connection: As an example of
industry deployments of microservices networking we cite
Istio [2] and Envoy proxy [3]. Istio is a popular example
of what is known as a service mesh. A service mesh is a
control plane that works with Kubernetes to deploy networking
infrastructure throughout Kubernetes clusters. Typically, this
is done through deploying a mesh of sidecar proxies, like
Envoyproxy with Istio, that provides the networking data
plane and implements components like load balancing, service
discovery, backpressure and much more.

Envoy acts as both an ingress and egress proxy. The egress
proxy implements load balancing and routing for any requests
generated by the attached microservice component to down-
stream services. The ingress proxy intercepts all incoming
requests from upstream services, and is used for monitoring,
security management, etc. In our work we leverage this
architecture so that downstream ingress proxies can provide
feedback to upstream egress proxies, improving load balancing
decisions. Since our changes are only within the proxy, no
modifications need to be made to the microservice applications
themselves.

Sidecar proxies typically, use traditional load balancing
algorithms like the Power of 2 choices (P2C) version of Least
Connection. In this algorithm, the proxy randomly considers
two possible downstream nodes and selects the one that has
the least number of outstanding requests from the current
node. Unfortunately, the node being picked might actually be
more heavily loaded than others since the proxy is unaware
of requests forwarded by the proxies in other pods.
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Fig. 2. LeastConn only has information about outgoing requests leaving a
sidecar, not the actual queue lengths at the backend nodes.

LeastConnection and similar algorithms that rely only on a
sidecar loadbalancer’s local state can perform well when the
number of service replicas is relatively low and workloads
are evenly distributed across the upstream nodes. Yet in
a microservice deployment, this may not be the case. For
example, the applications provided by Deathstarbench, an open
source collection of microservices, each contain between 21
and 41 unique microservices, each of which may be replicated
multiple times [7]. Netflix, an early adopter of microser-
vice architectures, was reported to have over seven hundred
different microservices deployed over tens of thousands of
virtual machines as of 2015 [8]. These massive arrays of
microservices form complex topologies with shared services
being accessed by many different types of upstream compo-
nents. Further, there might be geographical constraints in large
clusters leading to different client pods sending requests at
different rates to the backends. In such a dynamic environment,
workloads can easily become skewed, leading to an inaccurate
local view of downstream node load levels.

Least Connection Limitations: To see the intuition for why
Least Connection can perform poorly, consider the situation
in Fig 2, Upstream Node Up3 has two outstanding requests to
Backend B1 and one to Backend B2. The other two upstream
nodes each have one outstanding request to B2. Thus the total
number of outstanding requests at B1 is two while that on B2
is three. If now a fourth request arrives at the load balancer of
Up3, then the Least Connection algorithm on Up3’s LB, will
send the request to B2 instead of B1, which would have been
the optimal solution. If a centralized load balancer was being
used, this issue would not arise.

Generally, with a small number of servers and clients where
the clients are all receiving roughly the same number of
requests, this is not an issue since the relative equivalence in
the number of clients and servers mean that these discrepancies
will be small so each sidecar’s local view is a similar match to
the global one. However, that may no longer be true when there
is a large number of upstream nodes with different request
characteristics to the downstream nodes.

To empirically measure this phenomenon, we deploy a pair
of microservices and adjust the number of upstream nodes
accessing a set of ten downstream replicas. In order to focus
on the impact of load balancing across the downstream nodes,
we configure the upstream service to be very lightweight, and
make the downstream service expensive (consuming a 250
msec service time). We deploy a custom sidecar load balancer
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Fig. 3. Changing from 1 to 40 frontends causes a significant increase in the
range of response times and tail latencies.

similar to Envoy running the Least Connection algorithm and
use an HTTP load generator to stress test the system.

Figure 3 shows that as the number of upstream nodes
increases, the response time distribution widens significantly.
The case with only a single frontend (1:10) is representative
of a traditional monolithic service deployment where a cen-
tralized load balancer sits between tiers of the application,
while the other lines can represent distributed microservices.
Interestingly, the median response time remains similar (about
2.5 seconds), but changing from 1 frontend to 40 frontends
causes significant changes at the head and tail of the distribu-
tion. This result is somewhat unintuitive: one would typically
expect adding more frontends to improve performance, not
hurt it!

The explanation for these results is that the sidecar load
balancers are making conflicting decisions due to lack of
coordination – some requests are sent to very lightly loaded
servers which are able to respond very quickly, while others
queue up at overloaded servers, causing long delays. The
impact can be quite large: the range between the 10th and 90th

percentile increases by almost 5 times and tail latency degrades
by more than 40% when going from 1 to 40 upstream nodes.
Diagnosing Least Connection: We determined that there are
two factors that cause the response times of the system to
degrade by such a large amount:

1) the metadata that each sidecar load balancer holds
locally becomes stale much faster as the number of
upstream nodes increase making the load balancing
decisions progressively worse, and

2) a larger number of upstream nodes accessing backends
with heavy requests can easily overload them, similar to
the TCP incast problem [9].

In order to prove the first point, we deployed a Redis service
in our Kubernetes cluster to provide a global view of backend
load. The Redis cache stored the active queue length of each
downstream node. Before routing a request, a sidecar load
balancer would fetch queue length data for all nodes from
the caching service. The load balancer then updated the cache
to increment the queue length for the selected downstream
node. When receiving a response, the sidecar load balancer
subtracted 1 for the downstream node that sent the response.
This made the Redis service a global source of true backend
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Fig. 4. Using Redis to provide a global view of backend state makes the response time distribution nearly identical to having a single centralized load balancer
(green and orange lines overlap), and similarly reduces the variation in load across backends.
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Fig. 5. Using AQM to drop requests early helps the tail, but not the head of
the distribution, suggesting backends are still not evenly utilized.

queue lengths for all load balancers. With this simple addition
of a caching service we found that the overall performance of
a 40 upstream nodes is indistinguishable from that of using a
single upstream node (Fig. 4(a)).

To show the level of imbalance between downstream nodes
when the number of upstream nodes increases, we measured
the total number of requests sent to each downstream node
at 2 second intervals. With this data, we plotted (Fig 4(b)) to
show the standard deviation across the ten backends during
each interval, averaged over the entire experiment. We can
see that the mean of the standard deviation of new requests
received every sampling interval for the 40 frontend case is
much higher than the 1 frontend node case.

We conclude that response time degradation is caused by
the burstiness in the request profile which in turn is caused
by inaccurate local data. This is exacerbated when backend
requests are expensive (which is often the case), since even
if all frontends send just one request to the same backend,
they will cause it to be completely overloaded. Thus we
must combine load balancing in the upstream nodes and
overload control solutions in the downstream nodes to solve
this problem.

Overload Control Approaches: Two general techniques to
implement overload control are:

• Rate limiting, where upstream nodes purposefully slow
their requests to prevent backends from getting over-
loaded; often this is guided by backpressure algorithms
where the server lets the client know that the server is
overloaded.

• Admission control, where downstream nodes preemp-
tively drop requests to avoid excessive queueing; Active
Queue Management (AQM) algorithms try to intelligently
drop requests or network packets to do this in a graceful
way.

Unfortunately, naively applying backpressure has been
shown to lead to system-wide hotspots and trick the system
into upsizing or penalizing the wrong service [7]. Admission
control, on the other hand, is extremely useful in controlling
the number of requests on the server, but it does so at the
expense of “goodput” [7] directly affecting user experience.

To see the impact of an AQM approach that drops requests
once they exceed a response time bound, we repeat our
experiment with forty upstream nodes and ten backend nodes.
In Figure 5 we show the impact of setting a 3 second timeout
versus the default system with a 20 second timeout. Setting the
timeout to a low value is similar to having an admission control
system that will not allow any request into the queue if they
would take longer than the timeout value. The results show that
while the 3 second timeout puts a hard cap on the tail latency,
it doesn’t have much effect on the head latency, indicating that
load is still not evenly distributed. Even worse, we find that
the timeout-based system drops nearly 50% of the requests
entering the system in order to achieve this, and that the load
variation across backends is not significantly improved.

III. BLOC: DESIGN PRINCIPLES

In this work, our goal is to show that better load balancing
can be done by combining AQM, backpressure, and a novel
“confidence chip” distribution scheme that allows upstream
load balancers to perform rate limiting in a self-organizing
manner. The simple idea is that as requests flow downstream,
server metadata flows upstream to inform better load balanc-
ing. We wish to keep each server under its maximum capacity,
distributing load evenly through the system, without incurring
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overheads from explicit messaging or requiring global coordi-
nation which cannot scale to large microservice deployments.

Our framework is divided into two logical parts. The first
uses overload control to restrict the number of active requests
on the downstream nodes. Downstream nodes preemptively
reject incoming requests if they will cause them to become
overloaded. However, rather than simply dropping the re-
quests, the upstream load balancer takes this as a hint both
to backoff from this server for some time and to retry the
request on a different server.

Secondly, we use confidence chips as a form of load
information to make the load balancers’ decisions smarter.
Confidence chips flow upstream from backend nodes, pig-
gybacked in the response headers of successful requests.
Rather than just use local information like the number of
active connections, the load balancers use the number of
confidence chips they have received from different backends
as an indication of how likely they are to be able to handle
additional requests at this time. This allows the backend to help
load balancers coordinate request rates, without requiring any
direct communication.

A final key design consideration is that we seek to avoid
adding complexity to the overall system deployment or adding
centralized services which cannot scale well to large sys-
tems. Thus we eschew approaches such as the Redis-based
global coordinator described previously. A centralized ap-
proach would be difficult to deploy in practice and could incur
high overhead in terms of latency and resource cost if every
request needed to access it in a large scale system. Just as
importantly, we seek to support legacy code by incorporating
BLOC into the sidecar proxies deployed alongside applica-
tions. This allows us to seamlessly add this functionality
without any code modifications to the actual applications.

IV. SYSTEM DESIGN

A. Confidence Chips

BLOC uses “confidence chips” as a way for upstream nodes
to easily learn which downstream nodes are above or below
capacity. Each downstream node probabilistically returns a
chip to upstream nodes piggybacked with the response header.
An upstream node views the availability of a chip for a
downstream as an amount of confidence that the particular
node will have enough capacity to fulfill a request. The
upstream spends a chip to make a request.

The probability of a downstream node returning a chip is
related to how loaded the server is currently. This probabilistic
distribution also serves as a hedge against requests from
upstream nodes that the downstream is not talking to currently.
We can choose to reserve some capacity for upstream nodes
for whom we do not have an active request right now but
who might send a request to us in the near future. Also, since
downstream nodes do not track chips granted, the probabilistic
distribution protects the downstream from becoming too highly
oversubscribed.

Every node has a “capacity” value defined at the service
level which represents the number of requests it can have in

its queue while meeting a target SLO. When responding to a
request, the nodes decide whether or not to issue a chip to the
upstream node based on the following formula:

r = uniform random number ∈ (0, 1]

chip =

{
0, if r < q

0.8∗cap
1, otherwise

where q is the number of requests currently queued in the
downstream node.

In this case, we guarantee that at least 20% of the down-
stream node’s maximum capacity will always be reserved for
the upstream nodes that are either not interacting with the
downstream at the moment or have already been granted a
chip. The probabilistic nature of the equation means that the
number of chips generated during any given period of time
will depend on the load on the downstream node during that
time. Hence, when the server is lightly loaded it is more likely
to send out chips whereas during times of higher loads it is
sending lesser number of chips.

B. Active and Inactive Lists

Every upstream node individually maintains two lists of Ac-
tive and Inactive downstream nodes and a predefined “probe”
timer. Requests are preferentially routed to downstream nodes
that are in the Active list using the P2C version of LeastCon-
nection. The upstream nodes do not synchronize information
on the lists with each other.

A downstream node is on the Inactive list if:
• the upstream node does not have chips for it, or
• the downstream node recently rejected a request from this

node. In that case, the upstream node drops all chips it
has for that downstream.

When an upstream receives a chip from a downstream, it
adds that to the total chips for that downstream and moves
it to the Active list if necessary. The upstream can then use
those chips to make requests. If a downstream is already in
the Active list, then receiving more chips does not affect its
status.

If there are no entries in the Active list, then an upstream
will send a request to a downstream on the Inactive list in order
to update its metadata. This can only be done if the probe reset
timer has expired for that downstream, as described below.
However, probing a downstream does not immediately move
it into the Active list. If there are no nodes in the Inactive
list with a complete reset timer, then the request is dropped
immediately rather than enter a queue which would violate
its SLO. Thus in effect, the confidence scheme implements a
form of AQM.

C. Client Side Backoff, Retries and Probes

If a node receives a request which would push its queue
length above its capacity, then it will reject the request and
return an HTTP 429 - “TooManyRequests” - status. This
causes the upstream node to place the downstream node into
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the Inactive list so it will back off the offending server for a
predefined “reset” interval.

Rather than completely drop a rejected request, the BLOC
load balancer will automatically attempt to retry the request
on a different Active list server if possible. Each client can
retry a request a predefined number of times. Requests that
run through all retries at each layer are dropped.

If no Active servers are available, then the load balancer
will consider servers from the Inactive list if their predefined
reset interval has passed. However, if the client sends a request
to a server in this manner, then that server is retained in the
Inactive list and the probe timer reset. Only if the request
is successful and the server returns a confidence chip will it
actually be moved back into the Active list.

D. Server Capacity

The capacity parameter plays an important role in deter-
mining the performance of a system. This parameter forms an
upper bound on the size of the active queue of any upstream
node in the cluster.

In the simplest case, a system administrator can specify
a fixed Capacity value for each microservice based on its
expected service time and SLO. The Capacity value times
the service time gives an upper bound on request queueing
time. For simple services this may be feasible, but for large
scale applications with many microservices, or deployments
on heterogeneous hardware with different service costs, it may
not be practical.

Alternatively BLOC can attempt to dynamically determine
the capacity. This makes the system compute a cumulative
average of the number of active requests in its queue for 30
seconds. The system then uses this average as the capacity
value. We reset and recompute this average every 30 seconds.
It admits all requests by default in the first 30 seconds where
the capacity value is not defined yet.

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

A. Customizable Microservice Generation

Our experiment testbed has been inspired by the Deathstar-
bench [7], which provides a set of premade microservice ap-
plications for system benchmarking. However, Deathstarbench
is limited in its flexibility to only supporting its predefined
applications. For BLOC, we built a customizable microservice
generator that can define arbitrary microservice topologies [6].
Each microservice component is generated as a Python Flask
service with a customizable request processing time and can
optionally drive the input of many other services (fanout). The
fanout is simulated by making parallel requests to each down-
stream service. Configuration files are generated to deploy the
services in a Kubernetes cluster and automatically interconnect
them to form the service mesh. Figure 6 shows an example of
the type of service which the tool can deploy.

B. Sidecar Proxies

We also built the BLOCProxy reverse proxy framework [6]
from ground up to enable us to implement our algorithms with

Fig. 6. Architecture Example with BLOC microservice generator

ease. The proxy handles ingress and egress traffic, allowing
it to implement both admission control and load balancing.
We redirect all incoming and outgoing traffic, except traffic to
and from the proxy itself, to the proxy input and output ports
respectively. The proxy maintains a local directory mapping
pods to service types as well as the Active and Inactive
lists. During each request, the proxy can select the next
endpoint by using a load balancing algorithm defined through
an environment variable along with other metadata.

Currently, the system implements the following load bal-
ancing algorithms:

• Random
• P2C Least Connection
• BLOC
The BLOC egress proxy modifies the HTTP headers gener-

ated by the microservice application to add a field indicating if
confidence chips were generated. This is then interpreted and
stripped out by the BLOC ingress proxy on the upstream node
that generated the request. As of now, our implementation only
supports HTTP1.1 based applications. However, our approach
could easily be extended to support other protocols such as
gRPC, broadening the types of applications which can make
use of our design without any code modifications to the
applications themselves.

C. Control Plane

We also developed a simple control plane that uses the
Kubernetes API to monitor live endpoints for each service
that has been deployed. The proxies make REST API calls
to the control plane pods, which run as a daemonSet in the
Kubernetes cluster to populate their local service directories.

D. Test Bed Setup

In order to focus on load balancing between a pair of
microservices, we use BLOC to run an application consisting
of three layers of services (Fig 7) with the total number of pods
ranging between 12 and 51 in a Kubernetes cluster running on
4 physical nodes. The Gateway layer consists of a single pod
that acts as the ingress gateway. All requests to the cluster are
forwarded to this gateway and are distributed to the frontend

6



Fig. 7. Experimental Setup

layer. The frontend layer, in turn, is variably sized. It scales
between 1 and 40 pods. This layer sends all requests to the
backend layer. The backend layer has a constant size of 10
pods. We overprovision the gateway and frontend layers so
they will not become the bottleneck.

E. Workload

Most of our experiments have been conducted with a basic
backend service that simply sleeps for 250ms. However, we
also test BLOC with backend service costs between 100 to
500 ms and there is provision for a variable service cost,
which randomly selects a service cost uniformly in a range
configurable through the environment variables.

For load generation, we use two open source tools:
• hey [10], which is a closed loop load generation tool that

allows us to configure a concurrency for the requests we
make

• a custom version of loadtest [11], that lets us define a
mean requests per second and generates load according
to a Poisson distribution with this configured mean.

VI. EVALUATION

A. Experimental Setup

We ran our experiments on cloudlab [12] servers. A Kuber-
netes cluster was created with four Intel Xeon servers, each
with 20 cores and 196GB of memory. We then deployed our
control plane that ran a pod on each of the servers. These
pods form the service that is queried to get information about
the backends of services running in the cluster. We create an
affinity between our services and the physical nodes, such that
the gateway and frontend services run on 3 of the 4 physical
nodes. The fourth physical node can only schedule pods of the
backend service. This was done to ensure that the performance
of the backend pods are not interfered with.

We use hey [10] as our closed loop generator. We use the
tool to send requests to the gateway for a fixed amount of time
(5 minutes) where every requests starts a new TCP connection.

B. BLOC Overall Performance

We first compare BLOC and Least Connection to evaluate
our approach’s impact on response time distribution. Figure 8
shows the response time CDF of each approach when the
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Fig. 8. BLOC (Cap=10) provides a substantially tighter response time
distribution by avoiding incast problems and applying careful admission
control.

upstream nodes are accessing a shared pool of ten backends.
We compare forty BLOC upstream nodes with a fixed Capacity
parameter of 10 against LeastConnection with either forty
or ten upstream nodes. While the median response times
of all approaches are similar, there are dramatic differences
in their response time distributions. When there are forty
upstream nodes, Least Connection sees a very wide response
time distribution, with the fastest 10% of requests finishing
within 1 second and the slowest 10% of requests taking about
4 seconds, giving a 10-90%ile Range of 2.77 seconds. On
the other hand, BLOC maintains a very narrow response
time window, with a Range of 0.97 seconds. In fact, BLOC
achieves a tighter window than Least Connection running
with a single upstream node (we ensure that the front-end is
not the bottleneck in these experiments by using downstream
backends with an expensive service costs of 250 msec). In
addition to significantly improving response time, we find that
BLOC slightly improves overall throughput of the system, suc-
cessfully completing 0.93% more requests during the experi-
ment compared to Least Connection. Thus BLOC’s distributed
sidecars are able to effectively determine the relative loads
on different servers, improving overall system utilization and
providing very consistent response times.

Next we vary the service cost of the backend nodes to
understand the impact on load balancer performance. Figure 9
shows the improvement of BLOC over LC with forty frontends
and 10 backends with a per request service cost ranging from
0.1 to 0.5 seconds. Even for the less expensive requests, BLOC
provides a nearly 65% improvement in 10-90%ile Range, and
a 41% improvement in 99%ile latency. For more expensive
requests—where the impact of bad choices leads to even
longer queuing time and front-ends must avoid incast issues—
BLOC provides an even greater improvement.

C. Dynamic Capacity Estimation

BLOC relies on its estimate of downstream capacity to
control its AQM algorithm and allocation of confidence chips.
To illustrate the impact of the Capacity parameter, we evaluate
several fixed settings and BLOC’s dynamic capacity estimation
technique. Fig 10 shows the difference in performance when
we used a Capacity of 10 (which our tests suggest is optimal
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Fig. 9. Performance Improvement with BLOC over LeastConn for Different Service Costs
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Fig. 10. Sensitivity of BLOC to Capacity
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Fig. 11. Capacity Impact on Downstream Load Imbalance

for this configuration) Capacity of 15 (which tends to too
aggressively overload servers), and our dynamic Capacity
value based on the observed average. All of these approaches
provide an improvement over LeastConnection, but setting an
appropriate value gives a tighter bound.

To further analyze the impact of Capacity, Figure 11 shows
the level of imbalance on the downstream servers. This is
measured by looking at the number of requests served by each
node over time and calculating the standard deviation between
them during each time interval; we then plot the mean of
this variability. The results show that our hand tuned Cap=10
setting provides the greatest benefit, but that using the dynamic
averaging approach also keeps the variance relatively low.

D. Benefits of Different BLOC Components

BLOC employs several techniques to avoid overload and
keep downstream nodes balanced, so in this experiment we
quantify the benefits of each approach. We use boxplots to
show the median (red line), upper and lower quartiles (box
edges) and 1.5*interquartile range (whiskers). In Figure 12(a),
we can see that using AQM to drop requests that exceed
the downstream node’s capacity (without the rest of BLOC’s
functionality), provides a substantial improvement in response
time. However, this only shows the performance of requests
that are successfully processed, and as shown in Figure 12(b),
AQM drops about 4,000 of the 12,000 requests sent during
the experiment. Adding BLOC’s backoff technique provides
a further benefit to response time by reducing the chance
that requests will be added to a long queue, however, it
leads to an even higher drop rate. Adding support for Retries
substantially improves the system, eliminating most of the
drops and also providing a further reduction in interquartile
range. The final BLOC system that supports AQM, Retries,
and Backoff provides a significant improvement to response
times over LeastConn, and reduces the number of failed
requests by 22% (from 446 to 346) compared to the system
with only AQM and Retries.

E. BLOC Under Bursty Workloads

The prior experiments used the Hey benchmarking tool,
which is a closed loop load generator that seeks to contin-
uously saturate the system. While this is an effective way
to test the system on the brink of overload, it may not be
representative of real web workloads which tend to have bursty
periods of light and heavy load. In this experiment we use a
customized version of loadtest [11], which is an open loop
generator that can send requests at variable rates. While the
official loadtest distribution follows a uniform distribution,
our modified version sends requests following a Poisson
distribution which gives a more realistic bursty arrival process.

In Figure 13, we show the performance of BLOC rela-
tive to LeastConnection with forty upstream nodes and ten
downstream nodes under increasingly intense request rates.
The results show that BLOC provides a substantially better
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Fig. 12. The combination of all BLOC components ensures a tight response time distribution, while minimizing request drops
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Fig. 13. BLOC Response Time (90th Percentile) Improvement with Poisson
Load Generator

90th percentile latency, allowing it to support a much larger
incoming request rate than LeastConnection. LeastConnection
becomes overloaded with very poor performance after a work-
load of 35 req/sec, whereas BLOC is able to gracefully handle
load as high as 47 req/sec.

While BLOC provides a dramatic improvement in response
time distribution at high load, it is in part due to its preference
to drop requests that will cause excessive queuing. To evaluate
this, Figure 14 shows the percent of requests dropped at each
request rate for LeastConnection and BLOC. At lower request
rates, BLOC still drops a small fraction of requests due to
the bursty arrival pattern which can cause spikes in queue
length2. Nevertheless, BLOC’s drop rate is reasonably low,
and even when facing an overloaded system at the highest
request rate, BLOC drops only 16% of requests compared to
LeastConnection dropping more than 80%.

VII. RELATED WORK

In this work we have combined load balancing with over-
load control:

2In fact, we believe BLOC’s drops may be due to a bug causing the gateway
node to incorrectly drop requests even though the downstream nodes are not
full.
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Fig. 14. BLOC Dropped Requests Percentage with Open Loop Poisson
Generator

• Load Balancing approaches typically attempt to solve
issues related to heterogeneity, performance and uniform
load distribution.

• Overload Control are admission control schemes that let
servers control the rate at which clients can send requests.

A. Load Balancing

There is a wide range of work on load balancing for
web [13] and cloud applications [14]. We have based our work
on evaluating the LeastConnection algorithm, which is related
to the JSQ algorithm [5], in the microservices environment.

Research on the performance of load balancers, recently,
have generally looked at topics like handling heterogeneity
[15], uniform load balancing with consistent connections [16]
and so on. While it has been established that with centralized
load balancing it is not possible to significantly improve JSQ
[5], we find that this result does not port over to distributed
client side load balancing. In this work we tweak these load
balancing algorithms to be aware that their data might be stale
and to take overcommitment into account. As far as we know,
there are no other work that takes a look at the load balancing
algorithms in microservices networks.

B. Overload Control

Overload on a system can cause catastrophic failures [17]
and the idea behind overload control is to shed any excess
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load before it consumes any resources [18]. In this work we
primarily use active queue management (AQM) to shed extra
load. However, we do not want to sacrifice “goodput” [7] and
as such build overcommitment and retries into the system.
To our knowledge there have been no prior attempts to use
overload control towards load balancing in microservices.

C. Load Balancing with Server Feedback

There are two other systems [19], [20], that we know of,
that incorporate feedback from the servers into how requests
are distributed. In [19], the load balancer gets resource usage
statistics from the servers to make its decisions. In our previous
work [21], we have also used a similar feedback loop along
with a measure of the server capacities. In a distributed
load balancing architecture like microservices, however, this
leads to convergence issues. In [20], the authors use overload
controls to ensure no backends are overloaded. However, the
low target service cost of [20] enables communication between
all clients and all server, in the form of registration messages,
allowing for a complete flow of information. BLOC works
with a much higher service cost which implies that it needs to
load balance and protect against overload without any node-
to-node messaging.

VIII. CONCLUSIONS

Least Connection is a popular algorithm to balance load in
microservices architecture and is based on Join the Shortest
Queue, which has been proven to closely approximate optimal
load balancing in a single node centralized load balancer.
In the microservices world, the load balancer has moved
from being a single centralized node to multiple instances
each attached to a client service (upstream nodes). Here,
Least Connection finds it difficult to maintain the veracity
of its metadata cache, which can atrophy quickly. This leads
Least Connection to make bad load balancing decisions in
aggregation. This in turn leads to a significant widening of
the response time distribution and the lengthening of the tail.

In our framework, BLOC, we show that using overload
controls judiciously overcomes this problem and is a far more
simpler solution than maintaining distributed state. We also
show that BLOC significantly improves overall performance.
In our experiments, response time distribution improved by 2
to 4 times and tail latency did so by nearly 2 times. Overall, our
results show that carefully combining overload controls with
load balancing can lead to consistent response time despite
the presence of a large number of frontends sending requests
to a shared set of backends. BLOC is able to guarantee
this performance consistency without sacrificing either user
experience (by dropping requests) or adding to the overall load
and complexity of the system (by sending metadata messages
or using centralized caching services).

We have created a repository to enable anyone to
refer to and run the code to verify our results at
https://github.com/MSrvComm/Experiments.
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