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Abstract—Microservices break down monolithic applications
into smaller components and have become a popular model
for application deployment. In this model, load balancing
has moved from the server to the request side where a load
balancer resides with each upstream service.

Least Connection, a derivative of the Join the Shortest
Queue (JSQ), is a popular algorithm used in the microservice
architecture. Despite JSQ being proven to be nearly optimal
in certain scenarios, Least Connection significantly underper-
forms in microservices and edge environments.

My thesis aims to adapt load balancing to the microservices
environment such that they can autonomously choose from a
collection of approaches to mitigate widening of response time
distributions.

1. Introduction

Microservices have increasingly become the accepted
solution for deploying modern applications. This has led
to the rise of the “service mesh”, like Istio [1], to connect
the different microservices. The service mesh typically has
a “control plane”, managing configuration and metadata for
the cluster, and a “data plane”, managing the movement of
requests through the cluster. In the service mesh, requests
from the outside world land on an ingress gateway acting
as a gatekeeper to the entire cluster. In the service mesh the
load balancer has moved to a “sidecar” container deployed
with the upstream service, through reverse proxies like
Envoy [2].

Least Connection is a popular algorithm used in service
meshes both in the ingress gateway and the sidecars. The
Least Connection algorithm is a derivative of the Join the
Shortest Queue (JSQ) algorithm. In the JSQ algorithm, the
load balancer sends the next incoming request to the back-
end with the lowest queue size. JSQ keeps track of queue
size at each backend by keeping a count of the number of
outstanding requests. JSQ has been mathematically proven
to be nearly optimal [3] under certain conditions. Least
Connection adapts the JSQ algorithms for microservices
which is a popular distributed systems pattern to deploy
applications.

Least Connection keeps a count of the number of re-
quests to each backend in the downstream service. This
count is a reflection of the amount of load a particular client
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Figure 1. Changing from 1 to 40 frontends causes a significant increase in
the range of response times and tail latencies.

side server has sent to the individual backend and is not
representative of the total load on each of the backends.
Thus the Least Connection lacks a global perspective. When
routing requests to a particular service, Least Connection
uses power of two random choices algorithm (P2C) [4],
which proves that selecting the lesser of two randomly
chosen queues is almost as performant as choosing the
lowest queue size. The P2C algorithm also ensures that
multiple clients do not choose the same backend leading
to a herding problem.

My work shows that the performance of Least Con-
nection can deteriorate severely unless carefully managed,
Figure 1. The ingress gateway on an edge cluster has a
global perspective but also a strong assumption of homo-
geneity in the backend cluster. This assumption has a strong
possibility of being untrue in edge clusters [5], [6]. In the
sidecar clusters too, as the service layers scale independently
of each other, the response time distribution can broaden
significantly while the mean remains the same. In both cases,
I have shown that by incorporating feedback from the back-
ends and estimating service capacities, Least Connection can
be significantly improved narrowing the gap between the
performances of JSQ and Least Connection.

2. Proposal

In my thesis, I am working to incorporate feedback
from backend servers into load balancing decisions. This
problem involves determining the correct feedback, like
service capacity and queue length, and appropriate indicators
to assist in the selection of the best possible backend server.
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Figure 2. Mu’s load balancer vs. Least Connection load balancer
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Figure 3. Mu takes advantage of a newly added pod more quickly: shifting
load, improving both mean (horizontal lines) and variance in response time
more

2.1. Results

In edge environments, pods can have different service
capacities due mismatched hardware and/or interference due
to dense packing. In such environments, my research has
focused on Least Connection’s assumption of homogeneity
and its ability to rebalance load when new pods are added.

In my first paper, about the Mu system [7], we saw that
even when Least Connection has a global perspective there
is significant widening of the response time distribution,
especially when scaling up the cluster. Least Connection
protects against overloading new pods using P2C, so there
is only a 2/N chance of the new pod being picked, leading
to underutilization of resources in a resource constrained
environment.

In Mu, we developed an algorithm that uses piggybacked
values for capacity and queue length to pick a pod most
likely to provide the fastest response time. Thus the algo-
rithm automatically adjusts to different service capacities in
the backend by sending more requests to the faster pods.

In Figure 2, we see that at 80RPS (Requests Per Second),
the 99%ile, “Mu-99” and “LC-99”, decreases from 618ms
to 230ms since our algorithm sends more requests to the
faster pods compared to Least Connection. In Figure 3,
we see the result of pod addition on response time. Within
three seconds of adding a new pod, our algorithm causes a
marked downward shift in response times. Also, Mu exhibits
significantly lower variability than Least Connection by
accounting for the difference service capacities.

In my next paper, [8], we built a feedback system,
BLOC, through which downstream pods could influence
load balancing at the upstream service through 1) Active
Queue Management (AQM) on the downstream pods and
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Figure 4. Sensitivity of BLOC to Capacity

2) an estimate, “chip”, of the remaining capacity on the
downstream pods. The backend server only accepts requests
if its capacity, number of requests that can be handled
concurrently, is not exceeded. A rejected request is then
requeued at a different backend whose selection is guided
by the chips.

The capacity can be manually configured or a running
average of concurrent requests handled can be used. In
Figure 4, we see that both approaches perform better than
Least Connection which has no feedback from the backend.

2.2. Future Work

My work indicates that defining current capacity and
estimating it accurately for backend servers can significantly
improve load balancing in distributed systems. Defining
capacity as number of requests completed per unit time and
number of concurrent requests handled while maintaining an
SLO (Service Level Objective) are both useful approaches.
However, both approaches are plagued by the problem of
identifying and accounting for idle server time in the back-
ends and remains the prime detriment in capacity estimation.
Another problem is that service cost may vary between
requests impacting any capacity definition. A simple way
to work around this is to consider the “average” service
cost.

The second major issue is to develop a robust estimate
of the remaining capacity of a backend server when routing
requests. While the “chip” indicator has had some success,
it remains a problem that needs to be investigated further.

A third issue is that overload control techniques, while
successful at providing feedback for requests with high ser-
vice costs, become a significant overhead when the backend
service cost is low.

Finally, there is also a need for load balancers in dis-
tributed systems that can handle job priorities, variable job
sizes and so on.

My goal is to build load balancers that can distinguish
between different operating conditions and autonomously
deploy a bag of techniques that provide optimal results under
each of those conditions.
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