
Smart Proxying for Microservices
Middleware 2019 Doctoral Symposium

Ratnadeep Bhattacharya
ratnadeepb@gwu.edu

Geroge Washington University
Washington, District of Columbia

Abstract
Proxies provide the networking infrastructure to the mi-
croservices architecture which has become ubiquitous in the
cloud today. However, these proxies either cannot operate at
line rate or are unsuitable for generic deployments. Further-
more, state-of-the-art autoscaling algorithms are still unable
to account for quality of service the applications need to
provide. In my dissertation I plan to explore a split proxy
architecture that would be able to operate at line rate and
provide autoscaling services that take into account QoS. Fur-
thermore, such disaggregated L4/L7 processing provides a
unique opportunity to embed DDoS mitigation like security
features within the proxy framework.

CCSConcepts •General and reference→Performance;
• Networks → Cloud computing; • Security and pri-
vacy→ Denial-of-service attacks.

Keywords microservices, cooperative load balancing, split
design, automatic scaling, DDoS mitigation

ACM Reference Format:
Ratnadeep Bhattacharya. 2019. Smart Proxying for Microservices:
Middleware 2019 Doctoral Symposium. In Middleware ’19: 20th In-
ternational Middleware Conference Doctoral Symposium (Middleware
’19), December 9–13, 2019, Davis, CA, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3366624.3368164

1 Introduction
With micro-services becoming more and more ubiquitous,
proxy services have become key to providing networking
in cloud computing environments. Microservices are meant
to operate and scale as standalone units while still being an
integral part of the overall application. While proxies and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7039-4/19/12.
https://doi.org/10.1145/3366624.3368164

load balancers have long been used for traditional web ser-
vices, microservices are radically more dynamic in nature
and require a completely different solution. Load balancers,
in case of microservices, need to provide extremely low la-
tency and be able to reliably route traffic in an ever-changing
environment.
In order to provide reliable connections between micro-

services that also respect strict latency and throughput re-
quirements, these proxy services have to make improve-
ments in areas such as speed of operations, efficiency of load
balancing and autonomous scalability. I evaluated Envoy
[3], a popular general purpose proxy, which is flexible and
supports L7 load balancing, and found it could not operate
at line rates of 10Gbps NICs. Recently open-sourced high
performance stateless load balancers like Microsoft’s Ananta
[5], Google’s Maglev [8], GitHub’s GLB Director [6] and
Facebook’s Katran [7] operate at or close to the line rate but
do not provide HTTP (L7) level services. As a result there is
a need for a platform that provides the flexibility of Layer 7
routing with the efficiency of Layer 4 routing.
In my thesis I will explore challenges related to network

and container management for microservices. The thesis will
be composed of three projects that build on one another. In
the first phase, I will investigate the systems challenges re-
lated to building efficient TCP andHTTP layer load balancers
that provide both the performance and flexibility needed for
microservices. Next I will research how a smart control plane
can provide the intelligent load balancing and auto scaling
capabilities needed to ensure that both the microservices and
the networking infrastructure are able to efficiently meet
their incoming workloads. Finally I will study the security
challenges of running a microservices framework and show
how the load balancing infrastructure can assist with authen-
tication, DDoS prevention, and intrusion detection.

2 Problem
Currently, a popular micro-services deployment model is
as pods that contain both the service instance and a proxy.
Typically, these proxy services, such as Envoy, Docker Over-
lay Networking, WeaveNet, etc., have varied capabilities and
generally provide both TCP and HTTP proxy services within
the same worker threads. Unfortunately, their designs limit
their scalability and can incur high resource consumption.
Alternatively, higher performance TCP-only load balancers

31

https://doi.org/10.1145/3366624.3368164
https://doi.org/10.1145/3366624.3368164


Middleware ’19, December 9–13, 2019, Davis, CA, USA Bhattacharya

can be deployed such as Maglev or GLB, but they lack insight
into L7 data and are not well integrated with the microser-
vice management framework. Thus current approaches lack
the combination of performance, flexibility, and automation
that are desired for microservice management.
Essentially, a TCP proxy can load balance arbitrary re-

quests since it is working at the session level. However, the
major drawback of TCP load balancing is that application
level information cannot be incorporated into the load bal-
ancing decision. Most application protocols today are multi-
plexed; an HTTP proxy can separate multiple multiplexed
connections and open required number of sessions to back-
ends - multiplexed or otherwise. A TCP proxy will not be
able to make this distinction and the load balancing will
not be as effective. Further, a TCP proxy can only perform
routing based on IP, so fine grained rules such as redirection
based on an HTTP URL cannot be used. On the other hand
though, a TCP proxy can process a much higher number of
incoming packets than a typical HTTP proxy.

To demonstrate the performance limits of existing HTTP
proxies, I have evaluated the maximum throughput and re-
source consumption of the popular Envoy proxy. Our results
show that the Envoy proxy is both unable to operate at line
rates or scale linearly as a function of processor cores allo-
cated.

Figure 1. Fig: Envoy Response

3 Proposed Approach
TCP Layer: This layer would be deployed at the edge of the
network, handling incoming connections directly. At this
point, the idea is to simply load balance TCP connections
and map packets to existing connections, but other functions
can be evaluated in the future.
The benefit of the split TCP layer is that it can typically

handle a much higher load than application layer compo-
nents. This means that screening of DDoS and similar mali-
cious connection attempts can be incorporated at this layer.

HTTPLayer:Unlike the TCP layer, theHTTP (or any generic
L7 protocol) layer understands both multiplexed and kept-
alive connections, enabling load balancing to happen based
on the number of “true” connections.
Another benefit of this is that this protocol level under-

standing at the L7 layer can be used to influence load balanc-
ing decisions at the L4 layer through the control plane.
Control Plane: This component would generally be respon-
sible for synchronizing connection maps at the TCP layer,
for updating load information gathered from the HTTP layer
to the TCP layer, for making intelligent scaling decisions and
as a security manager.

In this project, I want to explore the potential of multi-level
load balancing algorithms. In this case, I want to evaluate
a feedback-based power-of-random-two [9,10] algorithm
operating at the TCP layer. At a later stage, I might also look
at machine learning based algorithms and do a comparison.
Autoscaling is one of the most critical requirements in

the microservices environment today. The microservices
themselves have been configured to be able to scale in or
out as an individual unit. Under most circumstances, load
balancers cope with this either by attaching to each service
instance as a sidecar or by not providing services beyond
the TCP layer. In our work, I wish to explore the potential of
machine learning algorithms to provide automatic predictive
scaling decisions that satisfy pre-defined SLAs (Service Level
Agreements).

A split level design provides the opportunity to protect
against attacks like SYN flood with traffic monitoring and
scrubbing within the proxy framework with feedback from
the HTTP layer, if required.

4 Conclusion
I expect to usher line rate network processing to microser-
vices network management. I also anticipate to introduce
a novel approach to load balancing and to be a herald of
smart solutions for scalability and security into the proxy
framework.

5 Acknowledgement
This work is being done in collaboration with Dr. Jinho
Hwang at IBM Research and under the advisement of Dr.
Timothy Wood at GWU. It is supported in part by NSF grant
CNS-1763548.

6 References
[1] DPDK. https://www.dpdk.org/
[2] Introduction to Modern Network Load Balancing and

Proxying. https://blog.envoyproxy.io/introduction-to-
modern-network-load-balancing-and-proxying-a57f6ff80236

[3] Envoy Proxy. https://envoyproxy.io
[4] HAProxy. https://www.haproxy.com/

32



Smart Proxying for Microservices Middleware ’19, December 9–13, 2019, Davis, CA, USA

[5] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim,
N. Karri. Ananta: Cloud Scale Load Balancing. In SIG-
COMM’13.

[6] GitHub GLB Director. https://github.com/github/glb-
director

[7] FacebookKatran. https://engineering.fb.com/open-source/open-
sourcing-katran-a-scalable-network-load-balancer/

[8] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W.

Shang and J. D. Hosein. Maglev: A Fast and Reliable
Software Network Load Balancer. 2016.

[9] M.Mitzenmacher A.W. Richa, R. Sitaraman. The Power
of Two Random Choices: A Survey of Techniques and
Results. Handbook of Randomized Computing.

[10] Test Driving “Power of Two Random Choices” Load
Balancing. https://www.haproxy.com/blog/power-of-
two-load-balancing/

33


	Abstract
	1 Introduction
	2 Problem
	3 Proposed Approach
	4 Conclusion
	5 Acknowledgement
	6 References

